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Propagation of a quantum fluid of light in a cavityless nonlinear optical medium:
General theory and response to quantum quenches
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Making use of a generalized quantum theory of paraxial light propagation where the radiation-axis and the
temporal coordinates play exchanged roles, we discuss the potential of bulk nonlinear optical media in cavityless
configurations for quantum statistical mechanics studies of the conservative many-body dynamics of a gas of
interacting photons. To illustrate the general features of this point of view, we investigate the response of the
fluid of light to the quantum quenches in the photon-photon interaction constant experienced at the front and
the back faces of a finite slab of weakly nonlinear material. Extending the standard Bogoliubov theory of dilute
Bose-Einstein condensates, peculiar features are predicted for the statistical properties of the light emerging from
the nonlinear medium.
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I. INTRODUCTION

After several decades during which the study of systems of
many interacting particles has focused on matter fluids such as
liquid helium, electron gases in solid-state materials, ultracold
atom vapors, nuclear-matter fluids, or quark-gluon plasmas in
colliders, photon propagation in suitably designed nonlinear
optical systems is presently attracting a growing interest as a
novel platform to investigate the physics of interacting Bose
gases, the so-called quantum fluids of light (see Ref. [1] for
a review). The interactions between the photons constituting
the fluid of light are mediated by the Kerr (χ (3)) optical
nonlinearity of the underlying medium.

So far, numerous experimental observations have been
performed for semiconductor-planar-microcavity geometries,
including the demonstration of a Bose-Einstein-type conden-
sation [2], of a superfluid flow [3], and of the hydrodynamic nu-
cleation of nonlinear excitations such as solitons [4] and quan-
tized vortices [5,6] in dilute photon gases. In the meanwhile,
active investigations have addressed the possibility of realizing
systems characterized by very large optical nonlinearities.
Correspondingly, the induced photon-photon interactions are
expected to introduce strong quantum correlations within the
fluid of light, generating in turn new quantum phases.

In this quest [1,7,8], researchers have been faced with
(at least) two main difficulties. On the one hand, obtaining
strong enough nonlinearities in scalable systems to study
the dynamics of a strongly interacting photon gas in a
spatially extended system turns out to be a major experimental
challenge. On the other hand, the dynamics of a light field in
devices based on cavities is intrinsically a driven-dissipative
one, which introduces severe complications in the theoretical
description of such systems and which is typically very
detrimental for the study of purely quantum features.

An alternative platform for studying many-body physics
in photon fluids is based on light propagating in a bulk
nonlinear (of Kerr type) optical medium. From elementary
classical optics, it is well known that the paraxial propagation
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of a spectrally narrow beam of light can be described
within the so-called paraxial and slowly-varying-envelope
approximations (see, e.g., Refs. [9–12]) by a nonlinear
wave equation formally analogous to the Gross-Pitaevskii
equation for the order parameter of a dilute Bose-Einstein
condensate [13]. As originally pioneered in Refs. [14,15],
this framework naturally translates upon quantization to a
many-body quantum nonlinear Schrödinger formalism with
the roles of the propagation coordinate and time exchanged.

This framework has been used in a number of theoretical
works where laser-physics problems have been reformulated
in the hydrodynamics language [16], including, e.g., the
investigation of superfluidlike behaviors in the flow of a photon
fluid [17–21], of nonlinear phenomena with light waves [22–
25], and of the so-called acoustic Hawking radiation [26–29].
From the experimental point of view, numerous works have
been devoted to the study of nonlinear features that may appear
in these systems, with a special attention dedicated to their
relation to hydrodynamics and superfluidity aspects [30–36]. A
major first step in the very quantum direction of realizing a gas
of strongly interacting photons in a propagating geometry has
been recently reported using an optically dressed atom gas in
the Rydberg electromagnetically induced transparency (EIT)
regime as a bulk nonlinear medium: This has allowed for the
experimental observation of strongly repulsing photons [37]
and, soon after, of two-photon molecular bound states [38].
These remarkable experimental advances call for a theoretical
approach that is able to describe in its full generality the many-
body dynamics of strongly interacting photons propagating in
a cavityless configuration.

Building atop the pioneering theoretical works [14,15] and
Refs. [39–44], we report here a fully general quantum field
theory of the propagating photon fluid. In this approach, the
roles played by the optical-axis coordinate z and the time
parameter t are exchanged: Light propagation in the z direction
is naturally described in terms of evolution equations while the
t direction corresponds to a third spatial dimension in addition
to the transverse x and y directions. In a paraxial-propagation
configuration, light diffraction provides an effective mass to
the photons in the (x,y) plane and chromatic dispersion leads
to a, typically different, effective mass in the t direction.
As usual, the Kerr nonlinearity of the medium gives rise to
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photon-photon interactions. In contrast to microcavity con-
figurations where driving and dissipation play a major role
in the photon-fluid dynamics [1], in paraxial-propagation
geometries, the quantum fluid of light follows a fully conser-
vative Hamilton dynamics starting from an initial condition
determined by the incident light field and its coherence
properties. The quantum state of the optical field at the end of
the evolution is experimentally accessible via a measurement
of the statistical properties of the transmitted light emerging
from the nonlinear optical medium.

As a most remarkable example of application of this
formalism, we then study the transmission of a coherent
light across a finite slab of weakly nonlinear medium. In
this very simple configuration, the photons experience a pair
of sudden jumps of the interaction parameter upon crossing
the front and the back faces of the nonlinear medium. As
a result of these two quantum quenches, the fluid of light
gets excited and its quantum state after the conservative
evolution across the nonlinear material can be reconstructed
from the statistical properties of the transmitted light. In the
weak-nonlinearity regime, the main excitation process consists
in the emission of pairs of correlated counterpropagating
Bogoliubov phonons, which reflects in peculiar features in
the intensity distribution and in the near- and the far-field
two-body correlation functions. In its simplicity, this example
illustrates the power of the conservative propagation dynamics
in view of generating, detecting, and manipulating strongly
correlated quantum phases of matter in photon gases, as well
as of studying quantum dynamical features of many-body
systems [45,46].

The paper is organized as follows. First of all, in Sec. II,
we review the classical propagation equation of a paraxial
beam of light in a cavityless nonlinear optical medium of Kerr
type. On this basis, we present in Sec. III a general theory
that makes it possible to describe the evolution of the quantum
optical field for generic values of the nonlinear interaction
parameter. In Sec. IV, we discuss how the relatively small
fluctuations superimposing upon a coherent-light field in the
weak-nonlinearity regime can be treated within the framework
of the Bogoliubov theory of dilute Bose-Einstein condensates.
As an application of this formalism, we investigate in Sec. V
the two-body quantum correlations resulting from the propaga-
tion of a laser beam across a slab of weakly nonlinear medium
and interpret their features in terms of a dynamical Casimir
emission of Bogoliubov collective excitations in a temporally
modulated quantum fluid of light. Finally, in Sec. VI, we draw
our conclusions and give prospects to this work.

II. CLASSICAL WAVE EQUATION

We consider the propagation of a laser wave in a dispersive
and inhomogeneous Kerr dielectric for which the (frequency-
dependent) electric susceptibility reads as [one writes x =
(x⊥,z), with x⊥ = (x,y)]

χ (x,ω) = χ (ω) + δχ (x) + χ (3)(x) I, (1)

where the homogeneous contribution χ (ω) takes into account
the chromatic dispersion of the medium, the linear modulation
δχ (x) comes from the existence of spatial inhomogeneities
and/or of an optical confinement, and χ (3)(x) I is the Kerr

nonlinear shift of the susceptibility, proportional to the local
electric intensity I = |E |2, i.e., to the square modulus of the
(complex representation of the) electric field. For simplicity’s
sake, the dielectric is assumed to be devoid of free charge
carriers and nonmagnetic. We finally suppose that the optical
field maintains its polarization in the course of its propagation
in the medium so that a scalar approach is valid. As explained,
e.g., in Ref. [11], this is possible for a paraxial beam of light
and provided χ (x,ω) slowly varies on space scales of the order
of the optical wavelength. Spin-orbit-coupling effects resulting
from significant deviations from the optical axis and significant
spatial variations of the electric susceptibility will be subjected
to a future publication [47].

Introducing the envelope E(x,t) of the laser-wave electric
field E(x,t) oscillating at the angular frequency ω0 as

E(x,t) = 1
2 E(x,t) ei(β0z−ω0t) + c.c., (2)

where “c.c.” stands for “complex conjugate,” and making
use of the standard paraxial and slowly-varying-envelope ap-
proximations (see, e.g., Refs. [9–12]), the Maxwell equations
supplemented by Eq. (1) lead to the following classical wave
equation for E(x,t):

i
∂E
∂z

= − 1

2β0
∇2

⊥E + D0

2

∂2E
∂t2

− i

v0

∂E
∂t

+U (x) E + g(x) |E |2 E . (3)

In this equation, ∇⊥ = (∂x,∂y) denotes the nabla operator in
the x⊥ = (x,y) plane and the functions U (x) and g(x) are
defined as [U (x),g(x)] = −β0 [δχ (x),χ (3)(x)]/[2 (1 + χ0)],
where χ0 = χ (ω0); the parameters β0 = β(ω0), v0 = v(ω0),
and D0 = D(ω0) are, respectively, the propagation constant
β(ω) = [1 + χ (ω)]1/2 ω/c (c is the vacuum speed of light)
of the laser wave in the z > 0 direction, the group velocity
v(ω) = [dβ(ω)/dω]−1 of the photons in the medium, and the
group-velocity dispersion D(ω) = d2β(ω)/dω2 evaluated at
the carrier’s angular frequency ω0.

The hydrodynamic interpretation of the propagation equa-
tion (3) is mostly well known in the limiting case of a purely
monochromatic wave at ω0 [17–25] and has offered a trans-
parent physical interpretation to a number of nonlinear-optics
experiments [30–36,48,49]. In this time-independent case, the
first and second derivatives of the envelope E with respect to
t vanish, in such a way that the propagation of the optical
field decribed by Eq. (3) recovers the mean-field dynamics of
the order parameter of a dilute two-dimensional Bose-Einstein
condensate, U (x) ∝ δχ (x) playing the role of some external
potential and g(x) ∝ χ (3)(x) corresponding to the effective
two-dimensional boson-boson interaction constant.

On the other hand, only a very few studies so far [14,15]
have investigated the consequences of this analogy in time-
dependent regimes, where, by extension, the propagation of the
photon fluid in the positive-z direction can be written in terms
of a time evolution in a three-dimensional (x⊥,t) = (x,y,t)
space where the physical time parameter t plays the role of a
third spatial coordinate in addition to the transverse variables
x and y. In the following, a special attention will be paid
to the new hydrodynamic features that originate from this t

dependence.
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In order to facilitate z (t) to be viewed as a true time (space)
parameter, we introduce the following coordinates:

τ (z) = z

v0
and ζ (t) = v0 t, (4)

homogeneous to a time and a length, respectively. In these new
variables, the paraxial-propagation equation (3) takes the form
of a time-dependent Gross-Pitaevskii equation:

i

v0

∂E
∂τ

= − 1

2β0
∇2

⊥E + v2
0 D0

2

∂2E
∂ζ 2

− i
∂E
∂ζ

+U (x⊥,τ ) E + g(x⊥,τ ) |E |2 E, (5)

where the electric-field envelope E now has to be considered
as a function of (r,τ ) = (x⊥,ζ,τ ) and U and g as functions
of (x⊥,τ ). This τ dependence of U and g corresponds in our
language to a temporal dependence, which, as we shall see in
the following, opens the way to the study of quantum-quench
physics in the framework of paraxial optics. On the other hand,
the fact that the medium properties do not depend on the
physical time t implies that U and g are independent on the
spatial ζ = v0 t coordinate.

In the Gross-Pitaevskii-type equation (5), the rigid-drift (in
the ζ direction) term −i ∂ζE(r,τ ) originates from the group
velocity of the photons in the medium and the kinetic operator

− 1

2β0
∇2

⊥ + v2
0 D0

2

∂2

∂ζ 2
= −

[
∂

∂x

∂

∂y

∂

∂ζ

]
1

2M

⎡
⎢⎣

∂/∂x

∂/∂y

∂/∂ζ

⎤
⎥⎦

(6)

involves a contribution in the (actual-time) ζ direction in
addition to the usual one in the x⊥ = (x,y) plane. The
anisotropy of the “mass” tensor

M =

⎡
⎢⎣
Mx,x 0 0

0 My,y 0

0 0 Mζ,ζ

⎤
⎥⎦ =

⎡
⎢⎣

β0 0 0

0 β0 0

0 0 − 1
v2

0 D0

⎤
⎥⎦

(7)

in Eq. (6) is a natural consequence of the different origins of
the effective massesMx,x ,My,y in the (spatial) x, y directions
and Mζ,ζ in the (temporal) ζ = v0 t one: the former are due
to diffraction while the latter originates from dispersion; note
that in vacuum, D0 = 0 and so Mζ,ζ is infinite, by definition.

When the medium is characterized by an anomalous group-
velocity dispersion, that is, when D0 < 0, one has Mζ,ζ > 0
and so the mass matrixM is positive in all the directions. In the
following (see Sec. IV for a detailed discussion), we shall see
that the dynamical stability of the fluid of light requires such
a negative D0, but also repulsive photon-photon interactions,
which sets g > 0 and therefore χ (3) < 0, that is, that the Kerr
nonlinearity is self-defocusing.

III. QUANTUM THEORY

In order to describe the quantum features of a light beam
propagating in the nonlinear medium considered in Sec. II,
the classical photon field E(r,τ ) verifying the paraxial wave
equation (5) must be replaced with a quantum field operator

satisfying suitable boson commutation relations. To this pur-
pose, in this work, we perform a canonical quantization [50,51]
of the classical field theory from which Eq. (5) may be derived.
The procedure first consists in rewriting the evolution equa-
tion (5) in Lagrangian and then Hamiltonian form (Sec. III A).
Section III B is dedicated to the precise determination of the
global multiplicative constant appearing in the Lagrangian and
the Hamiltonian of the paraxial-propagation problem; while it
plays no role at the classical level, it starts having a crucial
importance upon quantization. The quantization is finally
accomplished in Sec. III C by replacing the conjugate fields of
the classical Hamiltonian theory with quantum field operators
obeying equal-τ bosonic commutation relations, standardly
deduced from the canonical Poisson-bracket relations.

Of course, similar quantized wave equations describing
paraxial light propagation in nonlinear optical media have
been considered in the past (see, e.g., Refs. [14,15,39,43])
and applied to concrete problems related to quantum soliton
propagation [40,41]. As a crucial addition to these works,
we do not restrict our attention to one-dimensional fiber
geometries for which only the ζ coordinate matters [52],
but fully take into account the dynamics of the optical
field in the transverse (x,y) plane. Furthermore, an explicit
expression for the normalization constant appearing in the
boson commutators is provided. In contrast to works on the
quantization of paraxial electromagnetic fields [53,54], our
approach is able to naturally describe spatiotemporal light
propagation and to include the possible existence of spatial
inhomogeneities and/or of an optical confinement as well as of
an optical nonlinearity. As we shall see later, all these features
will be crucial for the theory to be applicable to the problem
considered in Sec. V, which requires an accurate description
of the peculiar spatial, angular, and spectral correlations
displayed by the laser beam emerging from the back face of
the nonlinear medium.

At this stage, the reader who is just interested in knowing
the basic elements structuring the quantum theory in order to
apply the latter to concrete quantum-optics problems can skip
Secs. III A and III B and go directly to Sec. III C, where one
finds the commutation relations of the quantum field operator
associated to the classical photon field E(r,τ ) [Eqs. (26)], the
many-body quantum Hamiltonian of the paraxial-propagation
problem [Eq. (27)], and the corresponding Heisenberg evolu-
tion equation [Eq. (28)].

A. Hamiltonian formulation

Let us introduce the Lagrangian

L[E∗,∂τE∗,E,∂τE ; τ ] =
∫

dr L(r,τ ), (8)

with the Lagrangian density

L = N
[

1

v0
Im

(
∂E∗

∂τ
E
)

− 1

2β0
|∇⊥E |2 + v2

0 D0

2

∣∣∣∣∂E∂ζ

∣∣∣∣
2

+ Im

(
∂E∗

∂ζ
E
)

− U (x⊥,τ ) |E |2 − g(x⊥,τ )

2
|E |4

]
. (9)

It is immediate to notice that the Euler-Lagrange equations of
motion δL(τ )/δE∗(r,τ ) = 0 and δL(τ )/δE(r,τ ) = 0 deduced
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from Eqs. (8) and (9) coincide with the evolution equation (5)
and its complex conjugate, respectively. The global normal-
ization factor N in the definition (9) of the Lagrangian density
L(r,τ ) will be rigorously determined in Sec. III B on the basis
of microscopic calculations. It plays obviously no role at the
classical level but is on the contrary crucial to derive the exact
commutation relations of the quantum field operators.

Equation (5) being a first-order differential equation in
τ , the data of the electric-field envelope E(r,τ ) at a given
time τ0 is sufficient to determine the subsequent evolution
of the system. As a result, the Lagrangian L(τ ), functional
of E∗, E , and their derivatives with respect to τ , contains an
overabundant number of dynamical variables. Thus, before
searching for the conjugate momenta and moving on to the
Hamiltonian formalism, it is convenient to eliminate the re-
dundant dynamical variables from the Lagrangian. Following
Ref. [55], one starts by rewriting the Lagrangian densityL(r,τ )
as a function of E1(r,τ ) = Re[E(r,τ )], E2(r,τ ) = Im[E(r,τ )],
and their spatiotemporal derivatives. In particular, the term
involving ∂τE∗ and ∂τE in Eq. (9) reads as (N /v0) (∂τE1 E2 −
E1 ∂τE2). Thus, by adding (N /v0) d

dτ

∫
dr E1 E2 to L(τ ), we get

a Lagrangian L′(τ ) which does not depend on ∂τE2 and which
is by definition equivalent to L(τ ). Its density L′(r,τ ) reads as

L′ = N
{

2

v0

∂E1

∂τ
E2 − 1

2β0
(|∇⊥E1|2 + |∇⊥E2|2)

+ v2
0 D0

2

[(
∂E1

∂ζ

)2

+
(

∂E2

∂ζ

)2]
+ ∂E1

∂ζ
E2 − E1

∂E2

∂ζ

−U (x⊥,τ )
(
E2

1 + E2
2

) − g(x⊥,τ )

2

(
E2

1 + E2
2

)2
}
. (10)

By means of the Euler-Lagrange equation relating to E2(r,τ ),
that is, δL′(τ )/δE2(r,τ ) = 0, one may express E2(r,τ ) as a
function of E1(r,τ ) and its time derivative. Inserting this
expression ofE2(r,τ ) into L′(τ ), we finally obtain a Lagrangian
L′′(τ ) which only involves the dynamical variable E1 and its
time derivative ∂τE1.

Now let us denote by 	(r,τ ) the conjugate momentum of
E1(r,τ ). By definition,

	(r,τ ) = δL′′[E1,∂τE1; τ ]

δ[∂τE1(r,τ )]
. (11)

Along the extremal “path,” δL′(τ )/δE2(r,τ ) = 0, and as
a consequence, δL′′(τ )/δ[∂τE1(r,τ )] = δL′(τ )/δ[∂τE1(r,τ )].
According to Eq. (10), this yields

	(r,τ ) = 2N
v0

E2(r,τ ). (12)

As conjugated fields, E1(r,τ ) and 	(r,τ ) obey the canonical
relations

{E1(r,τ ),	(r′,τ )}τ = δ(r − r′), (13a)

{E1(r,τ ),E1(r′,τ )}τ = 0, (13b)

{	(r,τ ),	(r′,τ )}τ = 0, (13c)

where {. . . , . . .}τ is the equal-τ Poisson bracket.
We are now able to write the Hamiltonian of the system,

H (τ ) =
∫

dr H(r,τ ). (14)

In Eq. (14), the Hamiltonian [56] density H(r,τ ) is by
definition obtained by Legendre transforming the Lagrangian
density L′′(r,τ ) = L′(r,τ ), H(r,τ ) = 	(r,τ ) ∂τE1(r,τ ) −
L′(r,τ ), which, in the light of Eqs. (10) and (12) and recalling
that E(r,τ ) = E1(r,τ ) + i E2(r,τ ), leads to

H = N
[

1

2β0
|∇⊥E |2 − v2

0 D0

2

∣∣∣∣∂E∂ζ

∣∣∣∣
2

− Im

(
∂E∗

∂ζ
E
)

+U (x⊥,τ ) |E |2 + g(x⊥,τ )

2
|E |4

]
. (15)

B. Normalization constant

Before moving on to the canonical quantization of the
classical field theory [Eqs. (9) and (15)], let us determine the
multiplicative constant N in terms of the optical parameters of
the electromagnetic wave. N was introduced as a global factor
in Eq. (9) to ensure that L(r,τ ) has the dimension of an energy
per unit volume, as it has to be according to Eq. (8). While
such a normalization constant plays no role at the classical level
since it cancels out in the Euler-Lagrange equations of motion,
it becomes important upon quantization as it determines
the actual spacing between the energy levels of the system.
The role of the quantized action in the Bohr-Sommerfeld
quantization rules is the most well-known example of such
a dependence.

A possible strategy to fix N is to determine the total
energy H̃tot(t) carried by the laser wave of complex electric
field Ẽ(x,t) = E(x,t) ei(β0z−ω0t) [E(x,t) = 1

2 Ẽ(x,t) + c.c.; see
Eq. (2)] in the simple case where U (x) = 0 and g(x) = 0, and
compare the latter with the well-known formula of classical
electrodynamics for the time-averaged energy of a quasi-
monochromatic electromagnetic field propagating through a
dispersive, homogeneous, linear, nonmagnetic medium, that
is (see, e.g., Ref. [57]),

H̃field(t) = 1

4

∫
dx

{
d[ω ε(ω)]

dω
(ω0) |Ẽ|2 + |B̃|2

μ0

}
. (16)

In Eq. (16), ε(ω) = ε0 [1 + χ (ω)] denotes the (frequency-
dependent) permittivity of the medium, ε0 being the one
of free space, B̃(x,t) = B(x,t) ei(β0z−ω0t), where B(x,t) =
±β0 E(x,t)/ω0 is the slowly varying envelope of the magnetic
field (deduced, e.g., from Maxwell-Faraday’s law), and μ0 =
1/(c2 ε0) is the vacuum permeability.

In order to get an expression for the physical energy
H̃tot(t) in our Lagrangian formalism, one has to perform
a Legendre transformation of the Lagrangian with respect
to the actual time coordinate t instead of the “propagation
one” τ . As the Jacobian determinant |∂(ζ,τ )/∂(z,t)| = 1
and since the action S[E∗,E] = ∫

dτ L(τ ) = ∫
dr dτ L(r,τ )

of the optical system can be alternatively defined in the
(x,t) coordinates as S[E∗,E] = ∫

dt L̃(t) = ∫
dx dt L̃(x,t),

the Lagrangian density (9) stays invariant under the coordinate
transformations (4): L̃(x,t) = L(r,τ ). Thus, one finds from
Eq. (9) that the conjugate momentum 	̃(x,t) [	̃∗(x,t)] of
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E(x,t) [E∗(x,t)] in the (x,t) coordinates is given by

	̃(x,t) = δL̃[E∗,∂tE∗,E,∂tE ; t]

δ[∂tE(x,t)]
(17a)

= N
[

i

2 v0
E∗(x,t) + D0

2

∂E∗

∂t
(x,t)

]
, (17b)

as a consequence of which the Hamiltonian density H̃(x,t) =
2 Re[	̃(x,t) ∂tE(x,t)] − L̃(x,t) associated to L̃(x,t) in the (x,t)
coordinates reads as, when U (x) = 0 and g(x) = 0,

H̃ = N
[

1

2β0
|∇⊥E |2 + D0

2

∣∣∣∣∂E∂t

∣∣∣∣
2

+ Im

(
E∗ ∂E

∂z

)]
. (18)

Making the substitution E(x,t) = Ẽ(x,t) e−i(β0z−ω0t) into
Eq. (18), one deduces the Hamiltonian H̃ (t) = ∫

dx H̃(x,t)
as a functional of the total electric field Ẽ(x,t):

H̃ (t) = N
∫

dx
[

1

2β0
|∇⊥Ẽ|2 + D0

2

∣∣∣∣∂Ẽ

∂t

∣∣∣∣
2

+ω0 D0 Im

(
Ẽ∗ ∂Ẽ

∂t

)
+ ω2

0 D0

2
|Ẽ|2

+ Im

(
Ẽ∗ ∂Ẽ

∂z

)
− β0 |Ẽ|2

]
. (19)

The temporal evolution of the envelope E(x,t) is given by
the Hamilton equation of motion ∂tE(x,t) = {E(x,t),H̃ (t)}t ,
{. . . , . . .}t being the equal-t Poisson bracket, not to be
confused with the equal-τ Poisson bracket {. . . , . . .}τ defined
in Sec. III A. Inserting E(x,t) = Ẽ(x,t) e−i(β0z−ω0t) into this
evolution equation, one ends up with the following equation
for the total field Ẽ(x,t):

∂Ẽ

∂t
(x,t) = {Ẽ(x,t),H̃ (t)}t − i ω0 Ẽ(x,t) (20a)

= {Ẽ(x,t),H̃tot(t)}t , (20b)

where, making use of {E(x,t),	̃(x′,t)}t = δ(x − x′),

H̃tot(t) = H̃ (t) − i ω0

∫
dx e−i(β0z−ω0t) 	̃(x,t) Ẽ(x,t) (21)

is the Hamiltonian encoding the time evolution of the total
electric field Ẽ(x,t). By means of Eqs. (17) and (19), we can
write it in the form

H̃tot(t) = N ω0

2 v0

∫
dx |Ẽ|2 + δH̃tot(t), (22)

where

δH̃tot(t) = N
∫

dx
[

1

2β0
|∇⊥Ẽ|2 + D0

2

∣∣∣∣∂Ẽ

∂t

∣∣∣∣
2

+ ω0 D0

2 i
Ẽ∗ ∂Ẽ

∂t
+ Im

(
Ẽ∗ ∂Ẽ

∂z

)
− β0 |Ẽ|2

]
. (23)

Within the framework of the paraxial and slowly-varying-
envelope approximations, one can check that δH̃tot(t) defined
in Eq. (23) gives a negligible contribution to the total energy
H̃tot(t) of the electromagnetic wave. By comparing Eqs. (16)
and (22), one finally obtains the normalization constant N in

terms of the angular frequency ω0 and the propagation constant
β0 = (1 + χ0)1/2 ω0/c of the laser in the medium:

N = β0

μ0 ω2
0

=
√

1 + χ0

c μ0 ω0
. (24)

Brief discussions on the constant normalizing the Lagrangian
and the Hamiltonian in one-dimensional fiber geometries were
given in Ref. [14] and, in a bit more detailed way, in Ref. [39].
A physical interpretation of expression (24) will be given in
the next section.

C. Canonical quantization

In order to carry out the canonical quantization of the
(classical) Hamiltonian theory presented in Sec. III A, one
replaces the conjugated fields E1(r,τ ) and 	(r,τ ) with quan-
tum field operators Ê1(r,τ ) and 	̂(r,τ ) (by choice, in the
Heisenberg picture) and the Poisson bracket {. . . , . . .}τ with
the commutator [. . . , . . .]/(i �), where � is the reduced Planck
constant. On doing so, Eqs. (13) become

[Ê1(r,τ ),	̂(r′,τ )] = i � δ(r − r′), (25a)

[Ê1(r,τ ),Ê1(r′,τ )] = 0, (25b)

[	̂(r,τ ),	̂(r′,τ )] = 0, (25c)

from which and thanks to Eq. (12) one deduces the following
equal-time, that is, equal-τ = z/v0, commutation relations:

[Ê(r,τ ),Ê †(r′,τ )] = � v0

N δ(r − r′), (26a)

[Ê(r,τ ),Ê(r′,τ )] = 0, (26b)

Ê †(r,τ ) being the Hermitian conjugate of Ê(r,τ ): Ê †(r,τ ) =
Ê1(r,τ ) − i Ê2(r,τ ).

It is worth noting that, instead of reducing the overabundant
number of dynamical variables in the Lagrangian L(τ ) in order
to avoid dealing with fields which are not independent from
each other in the transition from the Lagrangian formalism
to the Hamiltonian one and in the canonical quantization
via the Poisson bracket, we could also have implemented
the more basic and robust Dirac-Bergmann quantization
procedure [50,58] to pass from the classical theory to the
quantum one, as recently used in Ref. [29]. As detailed in [59],
Dirac’s procedure produces the same equal-time commutation
relations for the quantum field operators as the ones deduced
from the canonical quantization method adopted in this work,
which fully validates our approach.

From the definition r = (x⊥,ζ = v0 t), one notes that the
commutation rules (26) involve quantum field operators at the
same “propagation” time τ = z/v0 but at different physical
times t and t ′ �= t . Such a writing is based on the co-
ordinate transformation (x⊥,z,t) �−→ [x⊥,τ (z) = z/v0,ζ (t) =
v0 t], which is of course legitimate only in the paraxial and
slowly-varying-envelope approximations and if backscattered
waves are assumed not to exist, i.e., if light propagation is
assumed to occur only in the positive-z direction. Such a quan-
tization procedure imposing equal-z and different-t (instead
of equal-t and different-z) canonical commutation relations
was pioneered in Refs. [14,15] and critically discussed in
Ref. [43]. It is also important to insist on the fact that the
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slow spatiotemporal variation condition that is assumed for
the classical electric-field envelope E(x,t) directly applies to its
quantum counterpart Ê(r,τ ): A discussion of such a condition
in a quantum framework is illustrated in Refs. [53,54].

By inserting the explicit expression (24) of the normal-
ization parameter N into the commutation rule (26a), one
easily gets that the multiplicative constant in the right-hand
side of Eq. (26a) reads as (v0/c) � ω0/[ε0 (1 + χ0)1/2], yielding
a simple interpretation of N in terms of the energy density of
a single-photon wave packet of total energy � ω0.

In light of Eqs. (14) and (15), the quantized Hamiltonian of
the system reads as, after considering the normal order,

Ĥ (τ ) = N
∫

dr
[

1

2β0
∇⊥Ê † · ∇⊥Ê − v2

0 D0

2

∂ Ê †

∂ζ

∂ Ê
∂ζ

+ i

2

(
∂ Ê †

∂ζ
Ê − Ê † ∂ Ê

∂ζ

)
+ U (x⊥,τ ) Ê † Ê

+ g(x⊥,τ )

2
Ê † Ê † Ê Ê

]
. (27)

Equation (27) corresponds to the many-body quantum Hamil-
tonian describing the evolution in time τ = z/v0 of a many-
photon laser beam propagating through the bulk inhomoge-
neous and nonlinear optical medium of electric susceptibil-
ity (1). In the dielectric, the position of a point is referenced by
the coordinates x⊥ = (x,y) and ζ = v0 t . The two first contri-
butions are the kinetic terms in the transverse (x,y) plane and
in the ζ direction with different effective masses (as discussed
in Sec. II), the second line describes the rigid global drift
along the ζ axis due the group velocity of light in the medium,
and the two last terms, respectively, account for the spatial
modulation of the electric susceptibility and for the two-photon
interactions mediated by the Kerr nonlinearity of the dielectric.

In the theory of ultracold Bose fluids, contact interactions
are usually considered in place of the actual, but much more
complicated, two-body interactions. This approximation is
very helpful in simplifying the many-body quantum problem
and is well accurate as long as the interparticle distance is
much larger than the range of the boson-boson interactions (see
Ref. [13]). Here, the assumed local form of the Kerr optical
nonlinearity automatically leads to contactlike interactions
between the photons of the light beam, that is, no diluteness
condition for the photon gas is required to get the four-
field interaction term ∝ ∫

dr Ê † Ê † Ê Ê in Eq. (27). Since no
hypothesis is made on the intensity of the photon-photon
interaction parameter g, the many-body Hamiltonian (27) can
describe a quantum fluid of weakly interacting photons, that
is, in the Gross-Pitaevskii–Bogoliubov regime, as well as
a strongly interacting one. In what follows, we will focus
our attention on the weak-nonlinearity regime, in which the
quantum fluctuations of the fluid of light can be described
within the framework of the well-known Bogoliubov theory of
dilute Bose-Einstein condensates (see, e.g., Refs. [13,60,61]).
Motivated by the intense experimental investigations that are
presently in progress [37,38], the strong-interaction regime
will be the subject of future works [62,63].

For the sake of completeness, it is useful to explicitly write
the evolution equation of the operator Ê(r,τ ). In the Heisenberg
picture, it is obtained from the system’s Hamiltonian as

i � ∂τ Ê(r,τ ) = −[Ĥ (τ ),Ê(r,τ )]. Using Eq. (27) and taking
advantage of the commutation relations (26), this gives

i

v0

∂ Ê
∂τ

= − 1

2β0
∇2

⊥Ê + v2
0 D0

2

∂2Ê
∂ζ 2

− i
∂ Ê
∂ζ

+U (x⊥,τ ) Ê + g(x⊥,τ ) Ê † Ê Ê . (28)

Equation (28), which governs the time evolution of Ê(r,τ ) in
the r = (x⊥,ζ ) space, is simply the quantized version of the
classical equation (5). As originally pointed out in Ref. [14]
for a one-dimensional waveguide geometry, it has the form of
a quantum nonlinear Schrödinger equation.

IV. BOGOLIUBOV THEORY OF QUANTUM
FLUCTUATIONS

A. General framework

In an illuminated dielectric medium devoid of free charges
as the one considered in this paper, quantum noise of the
electromagnetic field only arises from the quantum uncertainty
of the optical field, that is, in more physical terms, from
the discreteness of the photon. In the case of a strongly
coherent light beam propagating across a weakly nonlinear
three-dimensional bulk medium, quantum noise is typically
small and can be described in terms of weak-amplitude
quantum fluctuations oscillating on top of a strongly classical
wave.

Mutating well-known results from the theory of weakly
interacting ultracold atomic gases [13,60,61], one may develop
a Bogoliubov-type theory based on an expansion of the
envelope operator Ê(r,τ ) of the form

Ê(r,τ ) = E(r,τ ) + δÊ(r,τ ). (29)

In this expression, the classical field E(r,τ ), which satisfies
the Gross-Pitaevskii-type equation (5), corresponds to the
coherent component of the electric-field envelope and δÊ(r,τ )
is a small quantum correction to E(r,τ ). As the whole quantum
nature of the optical field is captured in the fluctuation operator
δÊ(r,τ ), the equal-τ commutation relations (26) then totally
transfer to the latter, giving

[δÊ(r,τ ),δÊ †(r′,τ )] = � v0

N δ(r − r′), (30a)

[δÊ(r,τ ),δÊ(r′,τ )] = 0. (30b)

Linearizing the Heisenberg equation of motion (28) with
respect to δÊ(r,τ ) and its Hermitian conjugate, one readily
gets the so-called Bogoliubov-de Gennes equation

i

v0

∂δÊ
∂τ

= − 1

2β0
∇2

⊥δÊ + v2
0 D0

2

∂2δÊ
∂ζ 2

− i
∂δÊ
∂ζ

+U (x⊥,τ ) δÊ + 2 g(x⊥,τ ) |E(r,τ )|2 δÊ
+ g(x⊥,τ ) E2(r,τ ) δÊ †, (31)

which encodes the time evolution of the quantum fluctuation
δÊ(r,τ ) in the three-dimensional r = (x⊥,ζ ) space and is in
fact the heart of the Bogoliubov approach. With respect to simi-
lar (classical) equations considered in the literature [20,29,36],
this equation explicitly includes the ζ = v0 t dependence of
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the field and the corresponding effective mass, given by the
group-velocity dispersion D(ω) at ω = ω0.

In Sec. IV B, we review the Bogoliubov theory of linearized
fluctuations in position- and time-independent configurations.
Although well established and known in the context of matter
fluids, it is important to quickly review it within the nonlinear-
propagating-geometry context because (i) of the nontrivial role
of the effective mass Mζ,ζ = −1/(v2

0 D0) in the dynamics of
the luminous fluid in the temporal ζ = v0 t direction and (ii)
of the existence of ongoing experiments which aim at probing
the phononic part of the Bogoliubov excitation spectrum of a
propagating fluid of light [36,64].

B. Spatially homogeneous system

In the simplest case where the classical background field
E(r,τ ) is at some time τ = τ0 homogeneous in all the (x, y, and
ζ ) directions, E(r,τ0) = E eiϕ0 with E,ϕ0 = const ∈ R, and
when the nonlinear optical medium is spatially homogeneous
with a constant Kerr coefficient χ (3),

U (x⊥,τ ) = 0, (32a)

g(x⊥,τ ) = − β0

2 (1 + χ0)
χ (3) = g0, (32b)

analytical solutions for the classical wave equation (5) and the
Bogoliubov-de Gennes equation (31) are available (see, e.g.,
Refs. [13,60,61]).

In such a configuration, the electric-field envelope E(r,τ )
follows a simple harmonic evolution with a linearly evolving
(in time τ ) global phase: E(r,τ ) = E eiϕ(τ ), where ϕ(τ ) =
ϕ0 − v0 g0 E2 (τ − τ0). In the theory of dilute Bose-Einstein
condensates, the wave number g0 E2 corresponds to the
chemical potential of the Bose gas [13].

In the homogeneous situation (32), the elementary exci-
tations of the fluid of light are plane waves of wave vector
q = (q⊥,qζ ) = (qx,qy,qζ ) in the r = (x⊥,ζ ) = (x,y,ζ ) space,
the solution of the Bogoliubov-de Gennes equation (31)
obeying the mode expansion

δÊ(r,τ ) = eiϕ(τ )
∫

dq
(2π )3

[uq eiq·r b̂(q,τ ) + vq e−iq·r b̂†(q,τ )].

(33)

The mode operators b̂(q,τ ) satisfy the same-τ commutation
relations

[b̂(q,τ ),b̂†(q′,τ )] = (2π )3 � v0

N δ(q − q′), (34a)

[b̂(q,τ ),b̂(q′,τ )] = 0, (34b)

and evolve harmonically as

b̂(q,τ ) = b̂(q,τ0) exp[−i ωq (τ − τ0)], (35)

with a frequency ωq = v0 [KB(q) + qζ ] determined by the q-
dependent wave number

KB(q) =
√

Kkin(q) [Kkin(q) + 2 g0 E2], (36)

where

Kkin(q) = 1

2β0
q2

⊥ − v2
0 D0

2
q2

ζ . (37)

The so-called Bogoliubov amplitudes uq and vq [r and τ

independent in the situation (32)] are finally given by

uq,vq = 1

2

Kkin(q) ± KB(q)√
Kkin(q) KB(q)

. (38)

By definition, they satisfy the normalization condition u2
q −

v2
q = 1. Because of the photon-photon interactions (g0 �= 0),

vq is nonzero: This indicates that the ground state of the
Bogoliubov theory differs from the trivial vacuum without
particles in the q �= 0 modes [13].

Modulo the qζ contribution to the oscillation pulsation ωq,
originating from the presence of the drift term −i ∂ζ δÊ(r,τ ) in
the Bogoliubov-de Gennes equation (31), the wave number
KB(q) defined in Eq. (36) corresponds to the well-known
Bogoliubov dispersion relation for the elementary excita-
tions propagating on top of a uniform dilute Bose-Einstein
condensate at rest, the quadratic function Kkin(q) given by
Eq. (37) playing the role of the single-particle kinetic energy
of matter-wave superfluids. Note that this result stems from
the conservative nature of the considered dynamics and is in
contrast to the rich variety of dispersions predicted for driven-
dissipative fluids of light in microcavity architectures [1].
The graphical representation of KB(q) is given in Fig. 1 for
repulsive photon-photon interactions, i.e., for g0 > 0, in the
two cases D0 ≶ 0.

In the anomalous-dispersion case, that is, when D0 < 0, the
photon effective mass Mζ,ζ = −1/(v2

0 D0) in the ζ direction
is, as the photon effective mass Mx,x = My,y = β0 in the

0 1 2 3
ξ⊥ |q⊥|

0

1

2.5

5

K
B
(q

⊥
,q

ζ
=

0)
/(

g 0
E2

)

= ξ⊥ |q⊥|

(ξ⊥ |q⊥|)2
2 + 1 =

(a) D0 ≶ 0

0 1 2 3
ξζ qζ

0

1

2.5

5
K

B
(q

⊥
=

0,
q ζ

)/
(g

0
E2

)

= ξζ qζ

(ξζ qζ)
2

2 + 1 =

(b) D0 < 0

0 1 2 3
ξζ qζ

0

2.5

5

K
B
(q

⊥
=

0,
q ζ

)/
(g

0
E2

) (c) D0 > 0

Real part

Imaginary part

FIG. 1. (Color online) Dispersion curves KB(q) (in units of
g0 E2) of the elementary excitations propagating on top of a
homogeneous quantum fluid of weakly interacting photons (with
g0 > 0) at rest. In the anomalous-dispersion case [D0 < 0, panels
(a) and (b)], KB(q) corresponds to the well-known Bogoliubov law,
linear at small q’s (which is indicated by the black straight lines) and
quadratic at large q’s (black parabola). In the normal-dispersion case
[D0 > 0, panels (a) and (c)], the effective massMζ,ζ in the ζ direction
is negative and KB(q) has an imaginary component [cf. panel (c)]: in
this case, the quantum fluid of light is dynamically unstable.
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transverse (x,y) plane, positive, and the “kinetic energy”
Kkin(q) stays as a consequence positive for any q. If one also
considers a self-defocusing nonlinearity, that is, if g0 > 0,
the Bogoliubov dispersion relation KB(q) never acquires an
imaginary part, which means that the photon-photon collision
processes mediated by the underlying nonlinear medium do
not give rise to unstable behaviors in the photon fluid.

In the case mentioned above where D0 < 0 and g0 >

0, at low wave vectors, that is, when ξ⊥ |q⊥|,ξζ |qζ | � 1,
where ξ⊥ = 1/(Mx,x g0 E2)1/2 = 1/(My,y g0 E2)1/2 and ξζ =
1/(Mζ,ζ g0 E2)1/2 are the healing lengths [13] of the photon
fluid in the x⊥ = (x,y) plane and in the ζ direction, respec-
tively, the Bogoliubov dispersion relation KB(q) is phononlike
in all the directions [as shown by the black straight lines in
Figs. 1(a) and 1(b)], but with different “sound velocities” [13]
s⊥ = g0 E2 ξ⊥ and sζ = g0 E2 ξζ �= s⊥:

KB(q) �
√

(s⊥ |q⊥|)2 + (sζ qζ )2. (39)

A pump-probe measurement of s⊥ was recently reported
in Ref. [36]. Another experiment aiming at measuring sζ

in a one-dimensional waveguide configuration is presently
in progress [64]. In the opposite limit, that is, when
ξ⊥ |q⊥|,ξζ |qζ | 
 1, the dispersion KB(q) of the elementary
excitations takes a single-particle-like shape [as illustrated by
the black parabola in Figs. 1(a) and 1(b)]:

KB(q) � Kkin(q) + g0 E2. (40)

In the present paraxial-optics context, the Hartree interaction
term g0 E2 corresponds to the usual modification of the
propagation constant due to the Kerr nonlinearity of the
underlying medium.

The situation is a bit more complicated in the case of a
normal dispersion, that is, when D0 > 0. As presented in
Fig. 1(c), there exists in that case a range of wave vectors
q in the ζ direction for which the dispersion law KB(q) is
purely imaginary; this signals that the quantum fluid of light is
dynamically unstable against the formation of a train of pulses
(see, e.g., Refs. [9,65–67]).

To complete the picture, we can also mention that for
focusing nonlinearities (g0 < 0) the low-wave-vector modes
in the transverse (x,y) plane are unstable for all D0. This
gives rise to a modulational instability which, in the optical
language, goes under the name of filamentation instability
(see, e.g., Refs. [68–71]). On the other hand, in this case,
the instability in the temporal direction only occurs for an
anomalous group-velocity dispersion (D0 < 0).

V. RESPONSE TO QUANTUM QUENCHES OF
THE KERR NONLINEARITY

As a first example of application of the general quantum
formalism developed in Secs. III and IV, we investigate in this
section the propagation of a wide laser beam across a slab
of Kerr medium immersed in vacuum (see Fig. 2). Having
in mind the reformulation of the propagation of the optical
field along the z axis in terms of a temporal evolution in time
τ = z/v0, it is straightforward to see how such a configuration
constitutes a very simple realization of a pair of quantum
quenches of the system’s Hamiltonian (27) in the nonlinear

(x, y)

z = −h/2

z = + h/2

τ = z/v0

Vacuum

χ(ω), χ(3)

Vacuum

Photon-photon

interactions

g0 �= 0

L
as

er

ω0 k0 ẑ

ω0 β0 ẑ

Correlations

FIG. 2. (Color online) Sketch of the investigated configuration.
A plate-shaped nonlinear medium of homogeneous linear electric
susceptibility χ (ω), constant Kerr coefficient χ (3), and finite thickness
h in the z direction is immersed in vacuum and illuminated by a wide
monochromatic-plane-wave laser beam parallel to the z axis. In such
a configuration, the photon-photon interaction constant undergoes a
sudden gate-shaped modulation along the optical axis. The resulting
quantum correlations appearing in the transmitted light reveal the
spontaneous emission of correlated counterpropagating excitations
in the photon fluid.

interaction parameter. As the optical nonlinearity is nonzero
only inside the Kerr material, the first (second) quench occurs
at the entrance (exit) face of the dielectric, where the value
of the photon-photon interaction constant suddenly jumps
from 0 to ∝ χ (3) �= 0 (from ∝ χ (3) �= 0 to 0). While this
work focuses on the weak-nonlinearity regime, the regime
within which the quantum fluctuations of the fluid of light are
accurately described by the Bogoliubov theory of linearized
fluctuations reviewed in the previous section, application of
the general theory (26)–(28) to the strongly interacting regimes
experimentally realized in Refs. [37,38] is definitely possible
and will be subjected to future works [62,63].

Given the extreme simplicity of the proposed setup as com-
pared to corresponding experiments using ultracold atomic
vapors [45], this study demonstrates the promise of nonlinear
optical systems to investigate different features of conservative
quantum dynamics, including the response to quenches in the
Hamiltonian’s parameters and the subsequent thermalization
dynamics [46]. In contrast to microcavity systems where cavity
losses play a crucial role in the dynamics and quickly wash out
quantum correlations [1], in the present propagating geometry,
losses can be made arbitrarily small simply by choosing a
suitable transparent dielectric medium.

Building on decades of expertise in quantum-optics exper-
iments, we discuss below how a detailed information on the
response of the photon fluid to the quenches of the interaction
parameter can be extracted from the statistical properties
of the light emerging from the slab of nonlinear material,
in particular, in the real-space intensity-correlation signal
(Sec. V C 1) and in the far-field angular distribution and two-
body correlations of the transmitted light (Sec. V C 2). An in-
tuitive interpretation of our predictions in terms of a dynamical
Casimir emission of Bogoliubov waves on top of a temporally
modulated quantum gas of weakly interacting photons is pro-
vided and explained in detail, and the analogies and differences
with standard four-wave-mixing experiments are discussed.

While working with spatially finite, e.g., Gaussian, beams
and extending the whole theory to the general case where
U (x) ∝ δχ (x) �= 0 and g ∝ χ (3) depends on x [cf. Eq. (1)] is
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computationally demanding but conceptually straightforward,
for the sake of simplicity we will restrict our attention to
homogeneous geometries. In an actual experimental imple-
mentation, this assumption requires working with continuous-
wave fields with a wide top-hat spatial profile propagating
in a homogeneous medium, so that a uniform bulk region
can be identified in the fluid of light, as done in the recent
experiment [36].

A. Physical situation

As sketched in Fig. 2, the slab of nonlinear material
consists in a homogeneous dielectric layer of linear electric
susceptibility χ (ω) and uniform Kerr coefficient χ (3). It is
assumed to be infinite in the x and y directions and to have
a uniform thickness h in the z one. The z = −h/2 (z = h/2)
surface defines the front (back) interface between the dielectric
and vacuum. The monochromatic laser beam of angular
frequency ω0 which illuminates perpendicularly the medium is
supposed to have a wide uniform profile in the transverse (x,y)
plane so that it can be legitimately seen as an infinite plane
wave. The propagation occurs along the increasing-z axis and
the propagation constant in vacuum is denoted as k0 = ω0/c.
At the angular frequency ω0, the material is supposed to
have an anomalous group-velocity dispersion (D0 < 0) and a
negative Kerr coefficient [χ (3) < 0, i.e., g0 > 0; see Eq. (32b)],
so that the fluid of light is dynamically stable inside the
nonlinear medium (see Sec. IV B).

Back-propagating light waves originating from reflection
on the interfaces separating the Kerr material from vacuum
would spoil the reformulation of the laser propagation in the
positive-z direction in terms of an effective time evolution. In
order to avoid dealing with their existence, we assume that the
z = ∓h/2 surfaces of the nonlinear-dielectric layer are treated
with a perfect antireflection coating. Since its characteristic
thickness in the z direction (of the order of a few optical wave-
lengths) is typically much shorter than all the other lengths of
the problem, its effect on light transmission can be summarized
as a simple boundary condition guaranteeing the conservation
of the energy-flux density of the electromagnetic wave, the
so-called Poynting vector, at the z = ∓h/2 interfaces of the
dielectic slab. Mathematically speaking, this may be explicitly
expressed as

Ê(x⊥,z = ∓h/2 ∓ ε,t) e∓ik0h/2

= (1 + χ0)1/4 Ê(x⊥,z = ∓h/2 ± ε,t) e∓iβ0h/2, (41)

where ε is an arbitrarily small positive parameter. Equa-
tion (41) allows for matching the quantum fluctuations of the
optical field in vacuum (|z| > h/2) to the ones propagating in
the bulk nonlinear medium (|z| < h/2); see Sec. V B 3.

B. Time evolution of the quantum fluctuations

1. Electric field for z < −h/2 and z > h/2

Outside the Kerr layer (when |z| > h/2), that is, in vacuum,
the (quantized) electric field Ê(x,t) of the laser wave admits

the usual Fourier expansion (see, e.g., Ref. [55])

Ê(x,t) = i

∫
dk

(2π )3

√
� ω(k)

2 ε0
ei[k·x−ω(k)t] α̂(k) + H.c., (42)

where “H.c.” stands for “Hermitian conjugate.” In this
equation, ω(k) = c |k| denotes the photon dispersion law in
vacuum, (we recall that) ε0 is the vacuum permittivity, and the
α̂(k)’s [α̂†(k)’s] are the photon destruction (creation) operators
in the state of wave vector k = (k⊥,kz) = (kx,ky,kz), subject
to the boson commutation relations

[α̂(k),α̂†(k′)] = (2π )3 δ(k − k′), (43a)

[α̂(k),α̂(k′)] = 0. (43b)

In vacuum, the second-quantized version of Eq. (2) reads
as Ê(x,t) = 1

2 Ê(x,t) ei(k0z−ω0t) + H.c., where k0 = ω0/c is the
propagation constant of the light wave along the positive-z
direction in free space. Thus, by identification, one deduces
from Eq. (42) that the envelope Ê(x,t) of the electric field in
vacuum is given by

Ê(x,t) = i

∫
dk⊥ dδkz

(2π )3

√
2 � [ω0 + δω(k⊥,δkz)]

ε0

× ei[k⊥·x⊥+δkzz−δω(k⊥,δkz)t] α̂(k⊥,δkz), (44)

equation in which we made the variable change δkz =
kz − k0 and in which we defined δω(k⊥,δkz) = ω(k) − ω0

and α̂(k⊥,δkz) = α̂(k⊥,k0 + δkz). The α̂(k⊥,δkz)’s obey the
commutation rules (43), assuming the exchanges kz ←→ δkz

and k′
z ←→ δk′

z. Furthermore, k⊥, δkz, and δω in Eq. (44) are
related through

δkz(k⊥,δω) = − k2
⊥

2 k0
+ δω

c
, (45)

which is obtained by expanding at leading order the vacuum
dispersion law ω(k) = c |k| around (k⊥,kz,ω) = (0,k0,ω0),
that is, within the framework of the paraxial (|k⊥|/k0 � 1)
and slowly-varying-envelope (|δkz|/k0 � 1 and |δω|/ω0 �
1) approximations considered in this paper. Taking advantage
of the dispersion law (45), one can transform the integration
over (k⊥,δkz) in Eq. (44) into an integration over (k⊥,δω),
yielding, at leading order in the paraxial and slowly-varying-
envelope approximations

Ê(x,t) = i

√
2 � ω0

c2 ε0

∫
dk⊥ dδω

(2π )3
ei[k⊥·x⊥+δkz(k⊥,δω)z−δωt]

× α̂[k⊥,δkz(k⊥,δω)]. (46)

In this way, the expression of the electric-field envelope
outside the nonlinear medium is easily inserted in the z ←→ t

mapping language discussed in the previous sections.
Defining in the integral (46)

(r,τ ) = (x⊥,ζ,τ ) = (x⊥,v0 t,z/v0), (47a)

q = (q⊥,qζ ) = (k⊥,−δω/v0), (47b)

â(q) =
√

� v0

Nvac
α̂[k⊥,δkz(k⊥,δω)], (47c)
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where Nvac = k0/(μ0 ω2
0) = 1/(c μ0 ω0) denotes the vacuum

value of the normalization constant (24), one easily shows that
Eq. (46) can be put into the form

Ê(r,τ ) = i

√
2 ω0 v0 Nvac

c2 ε0

∫
dq

(2π )3
eiq·r â(q,τ ) (48a)

= i

√
2 v0

c

∫
dq

(2π )3
eiq·r â(q,τ ), (48b)

where, introducing the input and output quantum
mode operators âin/out(q) = exp{(+/−) i [q2

⊥/(2 k0) +
v0 qζ /c] h/2} â(q),

â

(
q,τ ≶ ∓ h

2 v0

)

= exp

[
−i v0

(
q2

⊥
2 k0

+ v0

c
qζ

) (
τ ± h

2 v0

)]
â( in

out )(q).

(49)

By construction, the ladder operators â(q,τ ) satisfy the equal-τ
commutation relations [use Eqs. (43) and (47c)]

[â(q,τ ),â†(q′,τ )] = (2π )3 � c

Nvac
δ(q − q′), (50a)

[â(q,τ ),â(q′,τ )] = 0. (50b)

In order to keep some homogeneity in the notations used
outside and inside the nonlinear material, the coordinate
referencing a point along the t axis is conveniently defined
in vacuum in the same way as in the Kerr layer: ζ = v0 t

[Eq. (47a)], where v0 denotes the group velocity in the Kerr
medium (i.e., in the |z| < h/2 region) at the laser’s angular fre-
quency ω0. Finally, note that the âin(q)’s [âout(q)’s] are related
to the usual input (output) photon operators α̂in(k)’s [α̂out(k)’s]
in the z < −h/2 (z > h/2) vacuum through Eq. (47c).

In the specific configuration investigated here, with a
coherent monochromatic-plane-wave incident light beam, the
optical field in vacuum can be expanded as

Ê
(

r,τ ≶ ∓ h

2 v0

)
= E0 eiϕ≶ + δÊ(r,τ ), (51)

i.e., as a classical background field E0 eiϕ≶ (with E0,ϕ≶ =
const ∈ R) plus a small quantum-fluctuation term δÊ(r,τ ).
The latter may be decomposed according to the same plane-
wave expansion as the one [Eq. (48)] of the total electric-
field envelope: The assumption of having a purely coherent
incident beam translates into the condition that all the incident
modes other than the coherent-pump one are in their vacuum
state |0in〉, by definition such that α̂in(k �= kpump) |0in〉 = 0,
which correspondingly reads in terms of the âin(q) operators
as âin(q �= 0) |0in〉 = 0.

2. Electric field for −h/2 < z < h/2

Inside the nonlinear medium (when |z| < h/2), the (quan-
tized) electric-field envelope Ê(r,τ ) evolves in time τ = z/v0

in the r = (x⊥,ζ = v0 t) space according to the Heisenberg
equation of motion (28) with the prescription (32).

Within the Bogoliubov weakly nonlinear regime, the back-
ground electric-field envelope E(r,τ ) is of constant amplitude

E and of global phase ϕ(τ ) = ϕ0 − v0 g0 E2 (τ − τ0) (see
Sec. IV B), where τ0 = −h/(2 v0) is the time which (naturally)
initializes the evolution of the optical field in the medium.
From the continuity of the Poynting vector at the entrance face
of the nonlinear material, i.e., from Eq. (41) for z = −h/2
[τ = −h/(2 v0) = τ0], one finds

E = E0

(1 + χ0)1/4
and ϕ0 = ϕ< + (β0 − k0)

h

2
. (52)

On the other hand, from the continuity of the Poynting vector
at the exit face of the medium, i.e., from Eq. (41) for z = h/2
[τ = h/(2 v0)], one gets that the phase ϕ> of the optical field in
the z > h/2 vacuum is locked at, using the second of Eqs. (52),

ϕ> = ϕ0 − g0 E2 h + (β0 − k0)
h

2
(53a)

= ϕ< + (β0 − k0 − g0 E2) h. (53b)

Finally, the small quantum fluctuation δÊ(r,τ ) which
superimposes upon the mean-field solution E(r,τ ) = E eiϕ(τ )

is described by Eqs. (33)–(38), with E and ϕ0 satisfying the
constraints (52).

3. Matching at z = −h/2 and z = h/2

The relation between the fluctuations after (z > h/2) and
before (z < −h/2) the gate-shaped modulation of the optical
nonlinearity along the radiation axis are obtained by matching
Eqs. (33) and (48), (51) at the z = ∓h/2 interfaces using the
continuity equation (41).

At the entrance face of the dielectric plate, that is, at z =
−h/2 [τ = −h/(2 v0) = τ0], one has

i

√
2 v0

c
âin(q) e−ik0h/2

= (1 + χ0)1/4 eiϕ0 [uq b̂(q,τ0) + vq b̂†(−q,τ0)] e−iβ0h/2,

(54)

in such a way that, taking advantage of u2
q − v2

q = 1 and of the
second of Eqs. (52),

b̂(q,τ0) = i

√
2 v0/c√
1 + χ0

[e−iϕ< uq âin(q) + eiϕ< vq â†
in(−q) ].

(55)

At the back face of the Kerr layer, that is, at z = h/2 [τ =
h/(2 v0)], the continuity of the Poynting vector yields

i

√
2 v0

c
âout(q) eik0h/2

= (1 + χ0)1/4 ei(ϕ0−g0E2h) [uq e−iωqh/v0 b̂(q,τ0)

+vq eiω−qh/v0 b̂†(−q,τ0) ] eiβ0h/2, (56)

from which and using ωq = v0 [KB(q) + qζ ], Eq. (53a), and
Eq. (55) one finally obtains

âout(q) = ũq âin(q) + ṽ∗
−q â†

in(−q), (57)
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where we have defined

ũq = e−i(ϕ<−ϕ>+qζ h) Uq, (58a)

ṽq = −e−i(ϕ<+ϕ>+qζ h) Vq, (58b)

with

Uq = u2
q e−iKB(q)h − v2

q eiKB(q)h, (59a)

Vq = uq vq [e−iKB(q)h − eiKB(q)h]. (59b)

C. Statistical properties of the transmitted light

From the input-output relation (57), it is immediate to
extract predictions for all the coherence properties of the trans-
mitted light field (51) past the slab of nonlinear medium. As
already mentioned in the end of Sec. V B 1, our assumption of a
perfectly coherent pump incident on the dielectric corresponds
to having all the fluctuation modes of the photon field in the
vacuum state |0in〉 [âin(q �= 0) |0in〉 = 0]. As a consequence,
denoting 〈. . .〉 = 〈0in| . . . |0in〉 the quantum average in the
state |0in〉, one initially has, just before entering the nonlinear
material,

〈âin(q) âin(q′)〉 = 〈â†
in(q) âin(q′)〉 = 0 (60)

and, thanks to the commutation relation (50a),

〈âin(q) â†
in(q′)〉 = (2π )3 � c

Nvac
δ(q − q′). (61)

1. Correlations in position space

While the average light intensity remains equal to the
incident one in vacuum, the effect of the quenches of the
photon-photon interaction constant along the optical axis is
visible in the intensity-intensity correlation function

g(2)(r,r′; τ ) = 〈 : Î(r,τ ) Î(r′,τ ) : 〉
〈Î(r,τ )〉 〈Î(r′,τ )〉 − 1 (62)

at a fixed point z > h/2 of the laser-beam axis, i.e., at a fixed
time τ > h/(2 v0) after the quench sequence. In Eq. (62),
Î(r,τ ) = Ê †(r,τ ) Ê(r,τ ) is the (quantum) intensity operator
at (r,τ ) = (x⊥,ζ,τ ) = (x,y,v0 t,z/v0) and the colon symbol
denotes the normal-ordering operation.

Since we are dealing with a strongly coherent light wave,
the electric-field envelope Ê(r,τ ) at a time τ > h/(2 v0) after
the second quench of the photon-photon interaction constant
is given by the expansion (51), where the weak quantum
modulation δÊ(r,τ ) obeys the plane-wave decomposition (48).
At leading order in the small fluctuations δÊ(r,τ ) and δÊ †(r,τ ),
the intensity operator Î(r,τ ) may be expressed as

Î(r,τ ) = E2
0 + δÎ(r,τ ), where (63a)

δÎ(r,τ ) = E0 e−iϕ> δÊ(r,τ ) + H.c. (63b)

is a small quantum correction to the background light inten-
sity E2

0 outside the nonlinear medium. Taking advantage of
Eqs. (48) and (50a), the intensity correlator (62) becomes, at

leading order in the expansion (63a),

g(2)(r,r′; τ ) = 〈δÎ(r,τ ) δÎ(r′,τ )〉
E4

0

− 2 v0

c

� ω0

ε0 E2
0

δ(r − r′).

(64)

Physically, the second term in the right-hand side of Eq. (64) is
the shot-noise term originating from the discreteness, i.e., the
quantum nature, of the photon in vacuum; mathematically, it
is the consequence of the normal order considered in Eq. (62).

Straightforward manipulations using Eqs. (48), (49), (57),
(58), (60), (61), and (63b) lead to

g(2)(r,r′; τ ) = 2 v0

c

� ω0

ε0 E2
0

∫
dq

(2π )3
eiq·(r−r′)

×
{∣∣∣∣Uq exp

[
−i

q2
⊥

2 k0

(
v0 τ − h

2

)]

+Vq exp

[
i

q2
⊥

2 k0

(
v0 τ − h

2

)]∣∣∣∣
2

− 1

}
. (65)

The physics of these intensity correlations is most transparent
at the exit face of the Kerr layer, i.e., at τ = h/(2 v0). In this
case, the correlation function (65) admits a very simple integral
formulation; manipulating the Uq’s and the Vq’s given by
Eqs. (59) and denoting g(2)(r − r′) = g(2)[r,r′; τ = h/(2 v0)],
one indeed finds

g(2)(r − r′) = 2 v0

c

� ω0

ε0 E2
0

∫
dq

(2π )3
eiq·(r−r′)

×
[
K2

kin(q)

K2
B(q)

− 1

]
sin2[KB(q) h] (66a)

= − 2

π2

2 v0

c

� ω0

ε0 E2
0 ξ 2

⊥ ξζ

∫ ∞

0
dκ sinc(κ ρ)

× κ2

κ2 + 4
sin2

(
�

2
κ

√
κ2 + 4

)
, (66b)

where ξ⊥ = 1/(Mx,x g0 E2)1/2 = 1/(My,y g0 E2)1/2 and
ξζ = 1/(Mζ,ζ g0 E2)1/2 are the healing lengths in the
x⊥ = (x,y) plane and in the ζ direction in the dielectric, with
E2 = E2

0 /(1 + χ0 )1/2 the internal light intensity, � = g0 E2 h

is the thickness of the nonlinear medium in units of 1/(g0 E2),
sinc(X) = sin(X)/X is the so-called sine cardinal function,
and

ρ =
√

|x⊥ − x′
⊥|2

ξ 2
⊥

+ |ζ − ζ ′|2
ξ 2
ζ

(67a)

=
√

|x⊥ − x′
⊥|2

ξ 2
⊥

+ v2
0 |t − t ′|2

ξ 2
ζ

(67b)

is the dimensionless relative spatiotemporal distance, |x⊥ −
x′

⊥| and |ζ − ζ ′| = v0 |t − t ′| being naturally measured in units
of ξ⊥ and ξζ , respectively.

The graph of the two-body correlator g(2) [Eqs. (66)] as a
function of the dimensionless relative distance ρ [Eqs. (67)]
is represented in Fig. 3. As one can note from this plot, g(2) is
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FIG. 3. (Color online) Normalized intensity-intensity correla-
tor (66) when � = g0 E2 h = 10 (red curve) and � = 15 (black curve).
The oscillation pattern appearing after ρc = 2 � = 20 (indicated by
the red dotted line) or ρc = 30 (black dotted line) is the signature
of the occurrence of a dynamical Casimir emission of elementary
excitations in the quantum fluid of light.

characterized by a pronounced dip localized around ρ = 0, that
is, at equal x⊥ in the transverse plane and equal time t : (x⊥,t) =
(x′

⊥,t ′). This antibunching is a direct consequence of the
repulsive character (g0 > 0) of the photon-photon interactions
in the nonlinear medium and has been widely studied in the
context of many-body physics (see, e.g., Refs. [72–76]). Note
that the nontrivial spatial structure of g(2) shown in Fig. 3
makes the latter conceptually different from the single-mode
antibunching behavior that is obtained, e.g., by resonantly
scattering light off a two-level emitter [55] or by photon
blockade in a strongly nonlinear cavity [1].

The most important feature of g(2) is the fringe pattern that
is visible at larger ρ’s. The latter is concentrated in the ρ � 2 �

region and can be interpreted from simple physical argu-
ments [77,78]. When the sudden change of the photon-photon
interaction strength from zero to g0 �= 0 occurs at z = −h/2
[τ = −h/(2 v0) = τ0], pairs of correlated Bogoliubov waves
of opposite wave vectors ± q = ± (q⊥,qζ ) = ± (qx,qy,qζ )
are spontaneously emitted in the x, y, and ζ directions.
Inside the plate [that is, for τ0 < τ < h/(2 v0)], a Bogoliubov
excitation of wave vector q propagates at the group velocity
{ωq = v0 [KB(q) + qζ ]; see Sec. IV B}

v(q) = ∂ωq

∂q
= v⊥(q) + vζ (q), where (68a)

v⊥(q) = v0

[
∂KB

∂qx

(q) ux + ∂KB

∂qy

(q) uy

]
, (68b)

vζ (q) = v0

[
∂KB

∂qζ

(q) + 1

]
uζ , (68c)

ux (uy , uζ ) being a unit vector in the x (y, ζ ) direction. Thus,
as v is a growing function of q [see the definition of KB(q) in
Eq. (36)], the modes forming a pair of entangled excitations
of opposite momenta must be separated at a time τ > τ0 [and
such that τ < h/(2 v0)] by a distance

|x⊥ − x′
⊥| � |[v⊥(q) − v⊥(−q)]q→0| (τ − τ0) (69a)

� 2 s2
⊥ |q⊥|√

(s⊥ |q⊥|)2 + (sζ qζ )2
v0 (τ − τ0) (69b)

in the x⊥ = (x,y) plane and by a distance

|ζ − ζ ′| � |[vζ (q) − vζ (−q)]q→0| (τ − τ0) (70a)

� 2 s2
ζ |qζ |√

(s⊥ |q⊥|)2 + (sζ qζ )2
v0 (τ − τ0) (70b)

along the ζ = v0 t direction, where s⊥/ζ = g0 E2 ξ⊥/ζ are the
“sound speeds” (see Sec. IV B) in the transverse and temporal
directions inside the nonlinear medium. As a result, according
to (69) and (70), the (dimensionless) distance ρ separating two
correlated counterpropagating modes has to be

ρ � 2 g0 E2 v0 (τ − τ0), (71)

and so ρ � ρc, with

ρc = 2 g0 E2 h = 2 �, (72)

at the back face of the nonlinear medium where τ = h/(2 v0).
At this point, the correlation between counterpropagating
Bogoliubov excitations generated by the quench of the optical
nonlinearity at z = −h/2 results in an oscillatory structure
in the g(2) function that is concentrated in the ρ � ρc region,
which we easily verify on the examples of Fig. 3 where � = 10
(red curve) and � = 15 (black curve). The amplitude of the
fringe pattern diminishes as the separation distance ρ grows:
The correlations between Bogoliubov excitations of opposite
momenta are naturally all the weaker as the excitations are
separated in space and time.

This oscillatory behavior of the correlation function in
position space can be interpreted as resulting from a dynamical
Casimir emission [79–82] of elementary excitations on top
of a quantum fluid of light presenting a quench of the
photon-photon interaction constant in time τ = z/v0. This has
been theoretically studied in Ref. [83] in the case of a weakly
interacting Bose-Einstein condensate presenting a quick time
modulation of the atom-atom s-wave scattering length. From
the experimental point of view, the closely related phenomenon
of Sakharov oscillations [84], resulting from the interference of
synchronously generated counterpropagating acoustic waves,
has been recently observed in the density fluctuations of
cesium superfluids after an abrupt quench in time of the atom
interaction strength via Feshbach resonances [85]. This last
observation is of particular interest given its connection to the
temperature fluctuations in the cosmic microwave background
radiation [86].

2. Correlations in momentum space

The emission of correlated-phonon pairs in the fluid of
light due to the two quantum quenches of the photon-photon
interaction constant can also be detected in momentum space
by taking a far-field and spectrally resolved picture of the light
emerging from the back face of the nonlinear medium. In the
optical language, this process of emission of photon pairs at
wave vectors and frequencies different from the incident ones
goes under the name of spontaneous four-wave mixing.

A simple measurement that could be done would be the
one of the photon momentum distribution 〈N̂ (q,τ )〉 at a fixed
point z > h/2 of the radiation axis, that is, at a fixed time
τ > h/(2 v0), as a function of the wave vector q. Reminding
the definition of q, i.e., q = (k⊥,−δω/v0), this measurement
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involves (i) an angular resolution to isolate the light deflected
with a transverse wave vector k⊥ and (ii) a spectral resolution
to isolate the angular-frequency component of the transmitted
light at ω = ω0 ± δω. By construction, the population operator
N̂ (q,τ ) = â†(q,τ ) â(q,τ ) in the state of wave vector q does not
depend on time τ [see Eq. (49)] and one simply has N̂ (q,τ ) =
â
†
out(q) âout(q) for all τ > h/(2 v0). Thus, using Eqs. (57)–(61),

one obtains

〈N̂ (q,τ )〉

= |ṽ−q|2 (2π )3 � c

Nvac

Av0 �t

(2π )3
(73a)

= Av0 �t
� ω0

ε0

[
g0 E2

KB(q)

]2

sin2[KB(q) h] (73b)

= Av0 �t
� ω0

ε0

4

κ2 (κ2 + 4)
sin2

(
�

2
κ

√
κ2 + 4

)
, (73c)

where A and �t (A,�t → ∞) empirically denote the typical
transverse cross section of the beam of light and the typical
duration of the measurement [87], respectively, � = g0 E2 h is,
as before, the normalized slab thickness, and

κ =
√

ξ 2
⊥ q2

⊥ + ξ 2
ζ q2

ζ (74)

is the dimensionless total excitation wave number, q⊥ and
qζ being naturally measured in units of 1/ξ⊥ and 1/ξζ ,
respectively.

The plot of the spontaneous-four-wave-mixing intensity
distribution 〈N̂ (q,τ )〉 is shown in Fig. 4 for � = 10. The
most noticeable feature of the momentum distribution is its
oscillation profile originating from q = 0. Depending on the
value of the wave vector q, the two-body emission processes
at the front and the back interfaces reveal constructive or
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FIG. 4. (Color online) Normalized momentum distribution (73)
for � = g0 E2 h = 10. It reveals the occurrence of constructive and
destructive interferences at well-defined periods; the κn(�)’s [given
by Eqs. (75)] correspond to the q’s for which one has destructive-
interference effects. The main plot focuses on the oscillations of the
momentum distribution while the inset shows the whole function.

destructive interferences at well-defined periods. The latter are
determined by the finite thickness h of the dielectric layer and
the Bogoliubov dispersion KB(q) via the product KB(q) h. For
example, from Eq. (73c), the q’s for which one has destructive
interferences, i.e., zero minima in the momentum distribution,
are such that

�

2
κ

√
κ2 + 4 = nπ, that is, (75a)

κ ≡ κn(�) =
√

2

√√√√√(
nπ

�

)2

+ 1 − 1, (75b)

where n is an integer ≥ 1.
The quantum nature of the emitted particles can be assessed

via a measurement of the two-point correlation function in the
far-field regime, namely,

g(2)(q,q′; τ ) = 〈N̂ (q,τ ) N̂ (q′,τ )〉
〈N̂ (q,τ )〉 〈N̂ (q′,τ )〉 − 1, (76)

a function which quantifies the correlations between the differ-
ent angular and spectral components of the four-wave-mixing
emission. One can evaluate (76) by means of Wick’s theorem
[indeed, since the Bogoliubov-de Gennes equation (31) is lin-
ear, the corresponding Hamiltonian, the so-called Bogoliubov-
de Gennes Hamiltonian, admits a quadratic dependence on the
fluctuations δÊ and δÊ †, and so, on the ladder operators â and
â†]. Using Eq. (57) which connects the outgoing excitations
to the ingoing ones and Eqs. (60) and (61), we end up finding,
for all τ > h/(2 v0),

g(2)(q,q′; τ ) = (2π )3

Av0 �t

∣∣∣∣ ũq

ṽq

∣∣∣∣
2

[δ(q − q′) + δ(q + q′)]. (77)

As expected on general optical grounds and quantitatively
predicted by Eq. (77), the two-body correlation signals in
reciprocal space have to be concentrated along the (diagonal)
(q,q′ = q) and (antidiagonal) (q,q′ = −q) lines. The first one
reflects the vacuum fluctuations in the occupation N̂ (q,τ ),
while the second one is a clear signature of a complete
correlation between excitations of opposite wave vectors ± q.
The thermal analog of this phenomenon was recently observed
in a quasi-one-dimensional atomic Bose-Einstein condensate
whose speed of sound was modulated via a suitable time
modulation of the transverse confinement [88]; even though
this resulted in the creation of thermal phonons of equal and
opposite velocities, temperature was too high to assess the
quantum origin of the observed correlations.

As a final point, it is important to highlight our predictions
with respect to standard nonlinear-optics four-wave-mixing
effects, which are also described by paraxial wave equa-
tions [12,89–92] similar [93–95] to the classical counterpart
of the Bogoliubov-de Gennes equation (31). As typical
four-wave-mixing experiments benefit from maximizing the
intensity of the four-wave-mixing signal, they are typically
implemented in a phase-matched regime where both energy
and momentum are conserved in the process. In our lan-
guage, this requires that there exist (k⊥,δω) pairs for which
k2

⊥/(2β0) − D0 δω2/2 = 0, which implies that the transverse
(Mx,x = My,y = β0) and temporal [Mζ,ζ = −1/(v2

0 D0)]
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masses have opposite signs. As we have seen in Sec. IV B,
this is often associated to (absolute or, in some cases, only
convective [94]) instabilities in the quantum fluid of light.

Our angle on this physics is significantly different, as we
are interested in the response of the photon fluid to quantum
quenches. In an optical language, the energy that is deposed in
the fluid by the quenches corresponds to the nonconservation
of the normal (i.e., z) component of the wave vector at the z =
∓h/2 interfaces. While the four-wave-mixing intensity that
results from the quantum quenches is substantially weaker than
the one expected for a perfectly phase-matched configuration,
it encodes a detailed information on the conservative quantum
dynamics of the fluid of light in response to the sudden jumps
of the interaction parameter, which is the main object of this
work. As a specific and most illuminating example of such
features, the evolution of the photon fluid is ruled by the
Bogoliubov dispersion law KB(q) defined in Eq. (36), which
involves the optical nonlinearity in a very nonperturbative way.
The measurement of the spatial (x,y) component of KB(q),
based on a bulk nonlinear medium, was recently reported in
Ref. [36]; another experiment in a one-dimensional waveguide
geometry is underway to measure the temporal ζ = v0 t part
of the Bogoliubov dispersion [64].

VI. CONCLUSIONS AND OUTLOOKS

In this article, we have used a general quantum theory
describing paraxial light propagation in a bulk χ (3) medium in
terms of quantum nonlinear Schrödinger evolution equations,
as pioneered in Refs. [14,15], to theoretically investigate the
quantum statistical properties of a laser beam emerging from
a finite slab of Kerr material. By mapping light propagation
onto a temporal evolution and by viewing the physical time
as an effective spatial coordinate, our predictions may be
straightforwardly interpreted in the many-body-physics lan-
guage as the response of a gas of many interacting photons to
a pair of quantum quenches of the system’s Hamiltonian in the
nonlinear interaction parameter. This exemplifies the potential
of nonlinear optics in propagating geometry as a novel platform
for experimental studies of time-dependent problems in many-
body physics and quantum statistical mechanics [46].

In the first sections of this paper, we have reviewed the
theory underlying the space ←→ time mapping and we have
extended it to a fully three-dimensional configuration. We have
then provided a comprehensive overview of its features and
its power from a many-body-physics perspective. In contrast
to quantum fluids of light in planar-microcavity geometries
that have been considered and widely studied during the

last decade [1], the evolution of the quantum photon field
in a propagating configuration is fully conservative and not
subject to the unavoidable radiative (or nonradiative) losses
inherent to cavity devices. Starting from an initial many-body
state that is determined by the statistical properties of the
incident beam, quantum coherence can be maintained in the
quantum fluid of light over macroscopic evolution times. This
gives access to a plethora of many-body dynamical quantum
phenomena that can be eventually reconstructed from the
statistical properties of the transmitted light using standard
quantum-optics techniques.

In the second part, as a simplest, yet most remarkable exam-
ple of application of the quantum formalism, we have studied
in a detailed way the response of a spatially homogeneous
quantum fluid of light to the pair of quenches of the interaction
constant that it feels upon crossing the front and the back faces
of a χ (3) material immersed in vacuum. In the standard optical
configuration where the incident light beam is coherent and
the Kerr medium weakly nonlinear, we have demonstrated that
the quantum quenches of the optical nonlinearity lead to the
emission of pairs of correlated counterpropagating Bogoliubov
waves on top of the laser fluid. In particular, we have
pointed out how the peculiar quantum features of this process
can be experimentally identified in the angular and spectral
distribution as well as in the two-body correlation functions of
the transmitted light in both the near and the far field.

From a general standpoint, our results illustrate the power
of well-known nonlinear-optics setups as a workhorse to
investigate many-body phenomena presently of great interest
in quantum statistical mechanics. While we have so far focused
on the configuration of easiest experimental implementation,
this work paves the way to many other interesting directions.
As a few examples, one can mention the study of the strong
quantum fluctuations of the photon-field phase in reduced
dimensions [52], of the so-called Hawking radiation in analog
black-hole configurations [96], and, on a longer run, of
the strong quantum correlations that naturally appear in the
presence of significant nonlinearities at the single-photon
level [62,63].

ACKNOWLEDGMENTS

We acknowledge D. G. Angelakis, D. Faccio, S. Finazzi,
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Genoud, and B. Deveaud-Plédran, Hydrodynamic nucleation of

043802-14

http://dx.doi.org/10.1103/RevModPhys.85.299
http://dx.doi.org/10.1103/RevModPhys.85.299
http://dx.doi.org/10.1103/RevModPhys.85.299
http://dx.doi.org/10.1103/RevModPhys.85.299
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1038/nphys1364
http://dx.doi.org/10.1038/nphys1364
http://dx.doi.org/10.1038/nphys1364
http://dx.doi.org/10.1038/nphys1364
http://dx.doi.org/10.1126/science.1202307
http://dx.doi.org/10.1126/science.1202307
http://dx.doi.org/10.1126/science.1202307
http://dx.doi.org/10.1126/science.1202307


PROPAGATION OF A QUANTUM FLUID OF LIGHT IN A . . . PHYSICAL REVIEW A 92, 043802 (2015)

quantized vortex pairs in a polariton quantum fluid, Nat. Phys.
7, 635 (2011).

[6] D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. De Giorgi, I.
Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes,
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